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Abstract—A smart transportation system (i.e., intelligent trans- portation system) refers to a 

transportation critical infrastructure system that integrates advanced technologies (e.g., 

networking, distributed computing, big data analytics, etc.) to improve the efficiency, safety, and 

sustainability of the transportation system. However, the rapid increase in the number of vehicles 

on roads and significant fluctuations in the flow of traffic can cause the cov- erage holes of Road 

Side Units (RSUs) and local traffic overload in smart transportation systems, which can negatively 

affect the performance of systems and causes accidents. To address these issues, deploying 

Unmanned Aerial Vehicles (UAVs) as mobile RSUs is a viable approach. Nonetheless, how to 

deploy UAVs to the optimal position in the smart transportation system remains an unsolved issue. 

This paper proposes a Vehicle Trajectory-based Dynamic UAV Deployment Algorithm 

(VTUDA). The VTUDA utilizes vehicle trajectory prediction information to improve the 

efficiency of UAV deployment. First, we deploy a distributed Seq2Seq-GRU model to the UAVs 

and train the model. We leverage the well-trained model to predict vehicle trajectory. VTUDA 

then uses the predicted information to make informed decisions on the optimal location to position 

the UAVs. Further- more, VTUDA considers both the condition of communication channels and 

energy consumption during the deployment process to ensure that UAVs are deployed to optimal 

positions. Our experimental results confirm that the proposed VTUDA can effectively improve the 

deployment of UAVs. The experimental results also demonstrate that VTUDA can significantly 

enhance vehicle access and communication quality between vehicles and UAVs. 

Index Terms—Smart Transportation Systems, Edge Comput- ing, UAV Deployment, Machine 

Learning 

I.  INTRODUCTION 

Smart transportation is a rapidly evolving field that aims to improve the efficiency, safety, and 

sustainability of transportation systems [1]. Smart transportation is a integration of advanced 
technologies such as the Internet of Things (IoT), big data, and distributed computing, which plays 

a crucial role in addressing the challenges faced by modern transportation systems, such as urban 

congestion and safe driving [2], [3]. To support communication, Vehicle Ad hoc Networks 

(VANETs) are adopted as the key to supporting Vehicle to Vehicle (V2V), Vehicle to 

Infrastructure (V2I), and Vehicle to everything (V2X) communication [4]. However, the 

complexities of urban environments pose significant challenges to the development of VANETs. 
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For example, with the growing number of vehicles on the road, urban vehicle networks face the 

challenge of local traffic overload. These issues can negatively impact communication quality and 

accessibility for vehicles, reducing the overall performance of smart transportation systems. In 

addition, the complex environment of cities, including urban constructions, obstacles, and 

inaccessible areas, can cause problems such as base station coverage holes and poor 

communication link quality. Additionally, urban road congestion and local traffic hotspots can 

pose a serious threat to the low latency and high-reliability requirements of VANETs. 

In response to the above problems, the deployment of UAVs become a growing trend to support 

communication in areas that are without communication coverage or the base station is overloaded 

(critical areas). There are many existing studies that have proposed using UAVs to carry the mini-

base station as aerial nodes to assist ground vehicle communication [5], [6], [7]. The deployment 

of UAVs aims to achieve full- area coverage through aerial nodes. UAVs are widely used in 

agriculture, security inspection, communication, disaster rescue, and other fields because of their 

affordability [8], fast response, and versatility. Not only can it quickly adapt to various 

environments, but as an aerial node, it can also achieve large-scale coverage of complex 

environments within the city, which is an important part of the future communication network. In 

addition, although base stations and roadside units (RSUs) have provided communication 

guarantees for the communication of smart transportation, considering the high price and not 

flexible, they cannot deal with the overloading and coverage holes problems in a timely manner. 

Therefore, deploying UAVs to support smart transportation has obvious advantages in solving 

coverage holes and emergency communications. 

In order to deploy UAVs to critical areas, identifying critical areas is important. Generally, 

existing studies focus on adopting effective network access and network traffic as the key factors 

in identifying critical areas. Since most of the services in the VANETs are periodic broadcast 

services, the number of vehicles in this area directly impacts the network traffic which means there 

is a strong correlation between network traffic and road traffic. However, road traffic is constantly 

changing, and the network traffic also follows. The complexity of the dynamic environment brings 

uncertainties. How to efficiently deploy UAVs to support communication is still a challenge. Focus 

on the challenge, in this study, we consider road traffic, wireless communication channels, and 

UAV energy consumption to propose a co-design of a UAV deployment algorithm, which is 

Vehicle Trajectory-based Dynamic UAV Deployment Algorithm (VTUDA). In detail, we first 

leverage vehicle trajectory, location information, and moving trends to predict road traffic. Based 

on the road traffic prediction, we can describe the network traffic since the strong correlation 

between network traffic and road traffic in VANETs. Then, we also consider the wireless 

communication channel qualities. We design a wireless communication model between UAVs and 

vehicles according to the Air-to-Ground Propagation Channel Model [9]. Based on the 

communication model, we can evaluate the communication channel quality to optimize the UAV 

deployment. Furthermore, we also consider the energy consumption of UAV, specifically, we 

consider the energy consumption of UAV hover and fly, in order to ensure the flight of UAVs. 

To summarize, in our study we make the following contributions. 

 

• Vehicle Trajectory Prediction: We introduce a novel approach for vehicle trajectory 

prediction, leveraging distributed federated learning. To achieve this, we first employ a 

Seq2Seq-GRU framework to develop a multi- input multi-output model that takes in 

historical vehicle trajectory data as input and generates a predicted trajectory for a specified 



time in the future. Our proposed approach offers an effective solution for vehicle trajectory 

prediction that can be applied in a range of real- world scenarios. In addition, to enhance 

performance and decrease latency, we deployed the proposed model in a distributed 

manner, taking into account the distributed structure of the smart transportation system. 

Specifically, we distributed the model across the RSUs, allowing for efficient processing 

and faster prediction times. By doing so, our approach offers a significant improvement in 

the overall performance of the smart transportation system. 

 

• Vehicle Trajectory-based Dynamic UAV Deployment: We propose a co-design of 

trajectory prediction, wireless communication channels, and UAV energy consumption 

which is the Vehicle Trajectory-based Dynamic UAV Deployment Algorithm. In detail, to 

deploy the UAV at the position that obtains the optimal coverage rate, we consider the 

impacts of the number of vehicles in the UVA coverage area based on the predicted road 

traffic, meanwhile the safety distance between each UAV to formalize the system as a force 

field and deploy the UAV at the position where the resultant force is zero. 

 

 

II.  RELATED WORKS 

 
This section introduces the related work of UAV deployment algorithms and task-offloading 

schemes in smart transportation systems. In the smart transportation system, RSU generally acts 

as an edge node server to provide computing and commu- nication services for moving vehicles 

[6], [16]. Nonetheless, due to the fixed position of the RSU, considering the cost of large-scale 

deployment, it is impossible to achieve the full coverage of RSUs in some road sections in practical 

applications. To ensure the communication quality and user experience of the smart transportation, 

UAVs are considered promising solutions for temporary and dynamic edge server nodes [17]. For 

instance, Yu et al. [18] proposed a UAV- enabled mobile edge computing system, which is 

optimized by minimizing the UAV energy consumption and communication latency. Likewise, 

Seid et al. [19] leveraged UAVs as aerial base stations to assist the edge network in enhancing 

ground network performance (e.g., extending network coverage). 

Due to the distributed and dynamic nature of VANETs, purely theoretical models have limitations 

in finding optimal task offloading schemes [20]. As a machine learning algorithm that can find the 

optimal strategy through trial and error, deep reinforcement learning has been widely used in task 

offloading of edge computing in scenarios [21], such as mobile edge computing [22], smart home 

[23], and smart healthcare [24], among others. In terms of intelligent transportation, deep rein- 

forcement learning has been applied to the task offloading op- timization of smart transportation 

systems [25]. For instance, He et al. [26] proposed deep reinforcement learning model with 

prioritized experience replay and stochastic weight aver- aging for enhancing the satisfaction of 

quality of experience (QoE). Likewise, Ning et al. [27] adopted distributed deep Q- learning to 

minimize the offloading cost while satisfying the latency constraint of users. 

The task-offloading for ensuring the quality of experience is critical due to the diverse task 

requirements and dynamic wireless communication environment in smart transportation systems 

[28], [29]. The task allocation schemes that minimize the task processing latency has been 

researched recently. For instance, Xu et al. [30] proposed a task offloading scheme based on game 

theory and fuzzy neural networks. Furthermore, Raza et al. [31] analyzed the computation 



efficiency for limited battery Electrical Vehicles (EVs) while considering the trade- off between 

computing time and energy consumption. 

 

 

Table I 

 
 

In addition, there are a number of studies that focus on the network resource allocation field to 

avoid network congestion and improve performance. For example, in [32], a wireless sensor 

network was utilized for the deployment and simulation analysis of sensor nodes within a 

particular environment. Also, Akram et al. [33] made an attempt to create the maximum capacity 

space for objects by using the network adaptive learning approach for trajectory prediction. 

Similarly, Tossa et al. [34] proposed a scheme for finding the optimal location for sensor nodes in 

wireless sensor networks with genetic algorithms, while considering coverage and connectivity. Xue et 
al. [35] suggested reducing position inaccuracies caused by sensitivity when computing the coordi- nates 
of beacons, unknown nodes, and devices. The proposed scheme focuses on the least-squares location in 
order to design a solution, which is both faster and more accurate than the non-optimized scheme 

concerning location. Likewise, Metaaf and Wu [36] designed schemes to improve the deployment 
optimization, minimizing energy consumption and extending the life of the network. 
 

 
 

 
 
 

 
 

 
 
 

 

 



III.  SYSTEM MODEL 

In this section, we begin by exploring the problem space of deploying UAVs to smart 

transportation, Then, we present our design rationale. Afterward, we introduce our proposed 

system model.  

 

 

Fig. 1. Problem space of deploying UAVs in smart transportation 
 

A. Design Rationale 

We identify the problem space of deploying UAVs in smart transportation which is shown in 

Fig. 1. Here, we define a three-dimensional space that includes physical resources, QoS 

requirements, and deployment. As shown with the shadow in the figure, in this study, we focus on 

improving the coverage rate considering network conditions and energy consumption. 

Furthermore, we propose a dynamic deployment algorithm to handle real dynamic road traffics. 

In detail, in a typical smart transportation scenario, RSUs are deployed beside roads as distributed 

computing nodes to response to the demands of vehicles. Due to considerations of reliability, 

availability, and cost, it is unfeasible to deploy a significant amount of RSUs to meet the highest 

demand. Thus, in a large city, there are many communication coverage holes. In addition, due to 

the dynamic of road traffic, the traffic density in- creases significantly during peak time. The RSUs 

don’t have any flexibilities to handle this situation. Therefore, deploying UAVs  as mobile RSUs 

to assist smart transportation systems to mitigate the harms of the aforementioned issues is 

becoming a popular approach. However, road traffic is highly dynamic as we discussed, and 

employing the current road information to deploy UAVs is inadequate in responding to sudden 

changes in traffic. Thus, road traffic prediction is necessary to be involved to improve the 

performance of the UAV deployment algorithm. To this end, based on the vehicle trajectory 

prediction, we consider the wireless communication channels and energy consumption and format 

the problem as a co-design of a multifeature optimization problem. 

To predict the vehicle trajectory, we deploy the Seq2Seq- GRU model to RSUs and operate a 

distributed federated learn- ing. The Gated Recurrent Unit network (GRU) is an improved version 

of the Recurrent Neural Network (RNN). The GRU has better performance on time series data 

predictions and has a simpler structure than the Long Short Term Memory network (LSTM). GRU 

only consists of two gates which are update gate and reset gate. The update gate determines how 

much of the previous hidden state to retain and how much of the new information to incorporate. 

The reset gate determines how much of the previous hidden state to forget. By con- trolling these 

gates, the GRU is able to selectively preserve or discard information, allowing it to better handle 



long-term dependencies in sequential data. Since the smart transportation system is a distributed 

system, we deploy the Seq2Seq-GRU model to distributed RSUs and operate a distributed 

federated learning. 

Finally, according to the result of vehicle trajectory pre- diction, we design a wireless 

communication channel model based on the number of connections and channel interfer- ences. In 

addition, to make sure reliable power supply, we consider the energy consumption for UAVs. By 

incorporating the above-mentioned features, we formalize the system as a comprehensive force 

field. The optimal position for the UAV can be determined by finding the spot where the net force 

is equal to zero. 

 

 
 

Fig. 2. System structure of deploying UAVs in smart transportation 

 

 

B. System Model 

 

We define a typical smart transportation scenario which is shown in Fig. 2. In this complex 

road traffic scenario, some RSUs are fully loaded. Thus, we deploy UAVs as mobile RSUs to 

response to the demands of vehicles. We assume a GPS device equips each vehicle and sends 

location information at each time slot sequentially by 5G wireless communication channel to 

RSUs. In addition, in our study, we assume all UAVs have the same coverage radius and UAVs 

can be mobile RSU and communicate with other RSUs by VANET.  

We denote UAVs as 𝑈 ∈ {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛} and vehicles as 𝑉 ∈ {𝑣1,𝑣2, 𝑣3, ⋯ , 𝑣𝑛}. In 

addition, the buildings in this area also can be represented by 𝐵 ∈ {𝑏1, 𝑏2 , 𝑏3, ⋯ , 𝑏𝑛} Since this is 

an urban area, the probability of having a line-of-sight (LOS) link between one of the UAVs 𝑢𝑖  

and one of the vehicles 𝑣𝑗 is defined as equation (1). Here, ℎ𝑢𝑖
 denotes the height of the 𝑢𝑖  , ℎ𝑢𝑖

 

denotes the height of the 𝑣𝑗 and ℎ𝐵  denotes the height of the building. We use a probability 

distribution function 𝐹(ℎ𝐵) to represent the height distribution of buildings. Furthermore, we have 

𝑘 = ⌊𝑑𝑖,𝑗 ⋅ (𝜇 ⋅ 𝜍)−2 − 1⌋. We denote 𝑑𝑖,𝑗 as the distance between 𝑢𝑖  and 𝑣𝑗, μ as the ratio of built-

up land  to the total area, and ς is the average number of buildings per unit area.  

 



𝑃𝑖,𝑗
𝐿𝑂𝑆 = ∏  𝑘
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In general speaking, the height of vehicles can be approximately zero, hence, we update 

the connectivity probability of the LOS link as equation (2). Based on the connectivity probability 

of the LOS link we also can get the connectivity probability of the non-LOS (NLOS) link as 

𝑃𝑖,𝑗
𝑁𝐿𝑂𝑆 = 1 − 𝑃𝑖,𝑗

𝐿𝑂𝑆 We consider the case as a mixture path loss model, the average pass loss 𝐿𝑖,𝑗
𝐴𝑉𝐺  

can be represented by equation (3). 

 

𝑃𝑖,𝑗
𝐿𝑂𝑆 = ∏  

𝑘𝑖,𝑗

𝑛=0 [1 − exp (−
[ℎ𝑢𝑖

−
(𝑛+1/2)⋅ℎ𝑢𝑖

𝑘+1
]
2

2⋅𝐹(ℎ𝑏)2
)].        (2)    

 

𝐿𝑖,𝑗
𝐴𝑉𝐺 = 𝑃𝑖,𝑗

𝐿𝑂𝑆 ⋅ 𝐿𝑖,𝑗
𝐿𝑂𝑆 + 𝑃𝑖,𝑗

𝑁𝐿𝑂𝑆 ⋅ 𝐿𝑖,𝑗
𝑁𝐿𝑂𝑆 .     (3) 

  

The 𝐿𝑖,𝑗
𝐿𝑂𝑆 and 𝐿𝑖,𝑗

𝑁𝐿𝑂𝑆 denote path loss of LOS and NLOS link and can be represented by 

equation (4). 

{
𝐿𝑖,𝑗
𝐿𝑂𝑆(𝑑) = 𝐿0

𝐿𝑂𝑆 + 10𝛾log (𝑑/𝑑0) + 𝜂𝐿𝑂𝑆

𝐿𝑖,𝑗
𝑁𝐿𝑂𝑆(𝑑) = 𝐿0

𝑁𝐿𝑂𝑆 + 10𝛾log (𝑑/𝑑0) + 𝜂𝑁𝐿𝑂𝑆

     (4) 

The 𝐿𝑖,𝑗
𝐿𝑂𝑆 and 𝐿𝑖,𝑗

𝑁𝐿𝑂𝑆 denote path loss at reference distance 𝑑0. 10log [(
4𝜋𝑑0

𝜆
)

2

] ⋅ 𝛾  is the 

path loss exponent, which is obtained by using minimum mean square error, and λ is the 

wavelength of the radio wave. Finally, 𝜂𝐿𝑂𝑆 and 𝜂𝑁𝐿𝑂𝑆 represent free space loss for LOS and NLOS 

link respectively. 

Due to the presence of multiple UAVs offering services to vehicles, the communication 

channel can be disrupted by overlapping signals. To mitigate the effects of signal interference, 

vehicles opt for a channel with the highest Signal-to- Interference-plus-Noise Ratio (SINR) to 

ensure optimal communication. We define SINR between the 𝑖th  UAV to the 𝑗𝑡ℎ vehicle as 

equation (5). The 𝑝𝑖,𝑗 denotes sending power from 𝑢𝑖  to 𝑣𝑗  and 𝑔𝑖,𝑗 denotes the power gain. 

∑  𝑛
𝑛=1,𝑛≠𝑖 𝑝𝑛,𝑗 ⋅ 𝑔𝑛,𝑗 is the sum of the interference for all other UAVs except 𝑢𝑖  and N is white 

Gaussian noise.  

 

𝑆𝐼𝑁𝑅𝑖,𝑗 =
𝑝𝑖,𝑗⋅𝑔𝑖,𝑗

∑  𝑛
𝑛−1,𝑛≠𝑖 𝑝𝑛,𝑗⋅𝑔𝑛,𝑗+𝑁

.     (5) 

 



Now we present the energy consumption model for UAVs. Recall the energy consumption for 

UAVs, which includes flying energy consumption and hovering energy consumption. We define 

constant 𝑒𝑓  to represent the flying energy consumption per time unit and 𝑒ℎ to represent the 

hovering energy consumption per time unit. Therefore, the total energy consumption 𝐸𝑓  for 

flying can be calculated by equation (6). Similarly, the total energy consumption 𝐸ℎ for hovering 

can be calculated by equation (7). 

 

𝐸𝑓 = 𝑒𝑓Δ𝑡 = 𝑒𝑓 ⋅
[(𝑥′−𝑥)(𝑦′−𝑦)]

−2

𝑣𝑖
𝐽 .      (6) 

 

𝐸ℎ = 𝑒ℎΔ𝑡.        (7) 

 

IV.  OUR APPROACH 

In this section, we introduce our approach to deploying UAVs in smart transportation. 

First, we present the vehicle trajectory prediction. Specifically, we define our distributed 

Seq2Seq-GRU model and loss function. Then, we introduce our proposed UAV deployment 

algorithm in detail. 

A. Vehicle Trajectory Prediction 

Recall the key factor in deploying UAVs to the demand position is to obtain vehicle trajectory 

information. However, the high dynamic traffic causes difficulty to use traditional mathematical 

models to represent the accurate vehicle movement tendency. To conduct an accurate model that 

represents the vehicle movement patterns in a certain area, it is necessary to adopt deep learning 

methods to learn the related historical information, such as velocity, acceleration, location, etc. 

However, limited by the computing power for RSUs, training the model in one RSU costs a long 

time and doesn’t satisfy the response time requirement for dynamic road traffic. To overcome these 

limitations, a distributed learning framework is required to coordinate the training of mul tiple RSU 

nodes (including RSUs and mobile RSUs), leading to a faster and more comprehensive 

understanding of traffic movement pat- terns. We now present the proposed federated learning 

model in the following. 

1. Seq2Seq-GRU:  

GRU is a type of recurrent neural net- work (RNN) architecture that is well-suited for 

processing sequential data. One of the major advantages of GRU over traditional RNNs is that it 

can overcome the vanishing gradient problem that can occur when training RNNs on long 

sequences of data. Given that vehicle trajectory can be organized as a time series data, it is possible 

to leverage the power of GRU to predict vehicle trajectory. By processing the historical positions 

and velocities of the vehicle as a sequence of data, a GRU model can learn to predict the future 

positions and velocities of the vehicle. 

In our study, we let 𝑥𝑡 = 𝑙𝑡 . Here, 𝑥𝑡 is one input of the node in GRU. Also, 𝑙𝑡 =
{(𝑥𝑡, 𝑦𝑡), 𝑎𝑡}, (𝑥𝑡, 𝑦𝑡) is the current location and 𝑎𝑡  is acceleration data. Hence, we define the reset 

gate and update gate as follows. 



{
𝑧𝑡 = 𝜎(𝑊𝑧 ⊙ {ℎ𝑡−1, 𝑙𝑡})

𝑟𝑡 = 𝜎(𝑊𝑟 ⊙ {ℎ𝑡−1, 𝑙𝑡})
    (8) 

 

The hidden state ℎ𝑡  can be represented by ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ𝑡
′  and ℎ𝑡

′ =
tanh (𝑊 ⊙ {𝑟𝑡 ⊙ ℎ𝑡−1, 𝑙𝑡}).We organize vehicle trajectory data as time series data that  is 

{𝑙𝑡 , 𝑙𝑡+1, ⋯ 𝑙𝑡+𝑘}  and we can model the movement of a vehicle as a sequence of states, where each 

state represents the location of vehicle at a specific point in time. The goal is to find a function that 

maps the previous sequence of states to the future sequence of states. The vehicle trajectory 

prediction problem can be represented by equation (9). 

𝑙𝑡+1 = 𝑧𝑡 ⊙ {ℎ𝑡 ⊙ 𝑟𝑡, 𝑙𝑡} + (1 − 𝑧𝑡) ⊙ ℎ𝑡   (9) 

In the smart transportation context, improving the accuracy of predicting the trajectory of a 

vehicle requires providing a sequence of historical trajectories as input to the model. By doing so, 

the model can learn to identify patterns and dependencies in the vehicle’s motion, and use this 

information to generate a more accurate prediction of the next location in the future. In addition, 

in our study, we need to obtain the future vehicle trajectory which is a time series sequential 

location set. However, the typical GRU cannot output a time series sequential location set. 

Seq2Seq (Sequence-to-Sequence) models are a type of neural network architecture, those 

models consist of an en- coder and decoder. One of the key advantages of Seq2Seq models is their 

ability to capture context and dependencies within the input sequence. This is accomplished 

through the use of an encoder-decoder architecture, where the encoder processes the input 

sequence and produces a fixed-length vector representation, which is then used by the decoder to 

generate the output sequence. This allows Seq2Seq models to generate more accurate and coherent 

output sequences than other types of models. Specifically, we input 𝑘 past moments to the Seq2Seq 

model, the model generates a prediction of the vehicle’s trajectory for  𝑘′ future moments. 

Generally, the encoder and decoder of Seq2Seq are RNNs. In order to improve the performance, 

in our study, we leverage GRU as the encoder and decoder. 

 

 

Fig. 3. Proposed Seq2Seq-GRU model 

 

Fig. 3 shows the structure of our proposed Seq2Seq-GRU model. Specifically, the encoder 

network of the model consists of three GRU layers and each layer has 𝑘 nodes. We group k 

sequential historical location information as input to each GRU node in the first layer, and the 

resulting output state information is then fed as input to the next layer, along with the next moment 



in the trajectory sequence. This process is repeated for all three layers, allowing the encoder to 

capture the temporal dependencies in the input trajectory. 

The decoder network has the same structure as the encoder network, with the last updated state 

of the final GRU unit in the encoder network being used as the initial state of the decoder network. 

Additionally, the last trajectory data is fed as input into the first GRU unit of the decoder, and the 

prediction result from the previous step is fed as input into the first layer of the GRU unit in the 

next step. This approach allows the model to generate accurate predictions for each step of the 

trajectory sequence, while also taking into account the previous predictions to improve the 

accuracy of future predictions.  

1. Distributed Federated Learning Framework: 

In the traditional centralized training framework for smart transportation systems, each 

computing node (RSU) holds local trajectory data, which needs to be uploaded to a cloud server 

for training a common neural network predictive model. Then, the well-trained model is deployed 

to RSUs to perform the prediction. However, this approach has several challenges. Firstly, data 

upload can consume a significant amount of network resources, leading to congestion and affecting 

realtime applications. Secondly, uploading data to a centralized server poses a risk of data leakage, 

compromising user privacy and security. Federated learning is a distributed learning architecture 

that can address the challenges of small data, data islands, and slow training speed while protecting 

data security and user privacy. The smart transportation system is a typical distributed system, that 

generates a large amount of data that can be used for model training. Therefore, we leverage the 

horizontal federated learning framework to implement the proposed Seq2Seq-GRU model. We 

define the global loss function as equation (10), where 𝐷𝑖 is the size of training data on  

𝑢𝑖 , loss𝑖  (𝑤) is the local loss function for 𝑢𝑖  and 𝐷 is the size of total training data. In our proposed 

model, we use Mean-Squared Loss as the loss function, and equation (11) represents the loss 

function. �̂�𝑖  is the predicted location and 𝐿𝑖 is the real location. 

 

Loss(𝑤) =
∑  𝑛

1−1 𝐷𝑖 ⋅loss𝐯(𝑤)

𝐷
.     (10) 

loss (𝑤) =
∑  𝑛

𝑖−1 (�̂�𝑥−𝐿𝑖)
2

𝑛
.     (11) 

 

B. Vehicle Trajectory-based Dynamic UAV Deployment Algorithm 

In this subsection, we present the proposed VTUDA in detail. After leveraging the Seq2Seq-

GRU model, we obtain the prediction of the vehicle trajectory in near future (T time steps). By 

doing so, the model facilitates pre-deployment of UAVs in strategic locations, which can alleviate 

communication pressure in hotspot areas. Furthermore, we also consider the communication 

channels, neighbor UAVs, and energy consumption to conduct a co-design to deploy UAVs to the 

optimal position.   

To accomplish this, we utilize a force-based model that treats the communication channels, 

energy conditions, and number of users as component forces. We update several  virtual forces to 

lead the UAVs to perform accurate flight and position dynamic updates. Equation (12) represents 

the attractive force between two UAVs 𝑢𝑖  and 𝑢𝑖 . Here 𝑢𝑖
𝑡 and 𝑢𝑚𝑎𝑥  represent the number of 

connected vehicles and the maximal capacity of UAV to connect with vehicles. If the number of 

connected vehicles increases, the attractive force increases which means if the number of 



connected vehicles is reaching the maximal capacity of UAV, another UAV will have high 

opportunity to come close to help. 𝐸𝑖
𝑡  and 𝐸𝑚𝑖𝑛 represent the current energy level for the UAV and 

the minimal energy level that allows UAV back to the station. If the energy level is low, the 

attractive force increases, in order to call another UAV to replace the low-energy level UAV. The 
1

𝑛
∑  𝑛

𝑘=1 𝐿𝑖,𝑘
𝐴𝑉𝐺  is the average path loss for all the neighbor UAVs and 𝑑𝑖,𝑘  is the distance between 

two UAVs. 

𝑓𝑖,𝑘
+ =

exp (
𝑢𝑖
𝑡

𝑢𝑚𝑎𝑥
)⋅𝐸𝑚𝑖𝑛⋅

1

𝑛
∑  𝑛

𝑘=1 𝐿𝑖,𝑘
𝐴𝑉𝐺

𝐸𝑡
𝑡 ⋅log 𝑑𝑖,𝑘

.    (12) 

 

By using a Seq2Seq-GRU network model, each UAV is capable of predicting the movement 

trajectory and future position of vehicles within a specific area. This allows the UAVs to gather 

data and generate a two-dimensional spatial distribution of the vehicles in the area, providing a 

detailed overview of their positions. Equation (13) represents the attractive force between vehicles 

and UAVs.  

𝑓𝑖,𝑗
+ =

1

𝑛
∑  𝑛

𝑗−1 𝐿𝑖,𝑗
𝐴𝑉𝐺

log 𝑑𝑖,𝑗
.      (13) 

 

Moreover, considering the safe distance between UAVs, we set ω as the minimum safety 

distance between two UAVs. We define equation (14) to represent the repulsion force between 

two UAVs. 

𝑓𝑖,𝑘
− = 10 ⋅ exp (−

𝑑𝑖,𝑘

𝜔
).     (14) 

Taking into account the effects of various forces, total force 𝔽 for 𝑢𝑖  can be represented by 

equation (15). The 𝔽𝑖,𝑥 and 𝔽𝑖,𝑦 are the vector sum of gravitational and repulsive forces for 𝑢𝑖  at a 

certain time step on 𝑥 and 𝑦 dimension respectively. The total force 𝔽 can be represented by the 

vector sum of 𝔽𝑖,𝑥 and 𝔽𝑖,𝑦, which is 𝔽 = 𝔽𝑖,𝑥 + 𝔽𝑖,𝑦. We set up a time interval Δ𝑡 between 

updating the new position for a UAV, in order to prevent the unstable total force due to the small-

scale movements of vehicles. If all UAVs are at the 𝔽 = 0 position at a time step, which indicates 

it completes the deployment.  

In the cross-coverage area, the vehicles calculate the SINR of all the available UAVs, and 

vehicles select the UAV with the largest SINR to make the connection. Similarly, if one UAV flies 

close to another UAV to assist. Vehicles in the cross-coverage area calculate the SINA for the new 

UAN, if it is larger than the original UAV, vehicles will switch the wireless communication 

channel to the new UAV, otherwise, they continue to connect with the original UAV. 

 

{
𝔽𝑖,𝑥 = ∑𝑓𝑖,𝑘

+ (𝑥) + ∑𝑓𝑖,𝑗
+(𝑥) + ∑𝑓𝑖,𝑘

− (𝑥)

𝔽𝑖,𝑦 = ∑𝑓𝑖,𝑘
+ (𝑦) + ∑𝑓𝑖,𝑗

+(𝑦) + ∑𝑓𝑖,𝑘
− (𝑦)

    (15) 

 



The proposed VTUDA is shown as algorithm 1. There are three factors that impact the time 

complexity of the algorithm. The number of UAVs, the number of vehicles that in the coverage 

area, and the calculation time of the Equation (12), (13), (14). We assume the calculation time is 

𝑇 and the time complexity of the algorithm can be represented by 𝑂(𝑘𝑢 ⋅ 𝑘𝑣 ⋅ 𝑇) ≈ 𝑂(𝑛2 ⋅ 𝑇). 

Here, 𝑘𝑢 and 𝑘𝑣 are the number of UAVs and the number of vehicles that in the coverage area. 

 

V.  PERFORMANCE EVALUATION 
 

In this section, we introduce our implementation to validate the efficacy of our proposed 

algorithm. We first compare the performance of different prediction models, then, we evaluate the 

coverage rate, energy consumption, and SINR for the proposed algorithm. 

 

A.   Prediction Evaluation 

In order to evaluate performance of the proposed Seq2Seq- GRU, we leverage a well-known 

open dataset that is NYC Taxi Trips Dataset [31]. The dataset includes 697,622,444 trips of Taxis 

with GPS tracking data in New York City. The data is organized into 12 categories, and we use 

70% as training data, 15% as testing data, and 15% as validate data. We adopt Python 3.10 and 

Pytorch framework to implement the Seq2Seq-GRU model. 

To evaluate the effectiveness of the Seq2Seq-GRU model for predicting trajectories, we are 

comparing its performance against several traditional machine learning techniques, including 

RNN, LSTM, and GRU models that are commonly used in deep learning. We use RNN as a 

baseline model to establish a benchmark for the Seq2Seq-GRU model’s predictive accuracy. In 

Fig. 4, we can observe the comparison results. The RNN baseline model has a mean square error 

of 3.531 on the testing dataset. The LSTM model outperforms the RNN model with a mean square 

error of 1.023, while the GRU model has a slightly lower mean square error of 0.8537. Lastly, we 

evaluated the proposed Seq2Seq-GRU model, which achieved a testing mean square error of 

0.4835, indicating that it outperforms all the other models evaluated in this study. 

We utilized a distributed federated learning structure for our proposed Seq2Seq-GRU model 

and compared the training loss of both centralized and distributed learning structures. Fig. 5 

demonstrates the comparative results between centralized and distributed learning. In the figure, 

the dotted line with circle marks represents the training loss of the dataset using a centralized 

learning structure, while the solid line with star marks represents the training loss of the dataset 

using a distributed learning structure. The results indicate that the distributed learning structure 

has a faster convergence speed than the centralized learning structure. Moreover, the training loss 

of the distributed learning structure, which is 0.2659, is better than that of the centralized learning 

structure, which is 0.7678, in our case. 



 

Fig. 4. Training loss comparison between different models 

 

 

Fig. 5. Training loss comparison between centralized and distributed models 

 

B. VTUDA Performance Evaluation 

In this subsection, we detail the evaluation results of the proposed VTUDA. Table I lists the 

parameter setting of our evaluation. 

 
Fig. 6. Coverage rate comparison 

 



Based on the parameter settings, we first evaluate the cover- age rate of the proposed VTUDA 

algorithm. The coverage rate is determined by calculating the ratio of the total connected vehicles 

and total vehicles. Therefore, the coverage rate τ is a number less than 1. We compare the coverage 

rate of the proposed VTUDA, random deployment approach, and fixed deployment approach, the 

result is shown in Fig. 6. We first randomly deploy UAVs, then, based on the different algorithms, 

UAVs move to the next position. In the figure, the x-axis shows the time steps and the y-axis shows 

the coverage rate. The dotted line with circle marks illustrates the coverage rate of the proposed 

VTUDA, the solid line with star marks represents the random deployment and the solid l ine with 

triangle marks represents the fixed deployment. Among the three UAV deployment approaches 

compared, VTUDA achieves the highest coverage rate. This is attributed to the fact that VTUDA 

employs accurate prediction results to deploy UAVs, resulting in superior performance compared 

to the other approaches. 

 
 

Parameters Value 

Number of UAVs 75 

The max coverage area of UAV 100 m 

The max connection ability of UAV 120 

The full battery package energy of UAV 5000 KJ 

The energy limit of UAV 500 KJ 

The height of UAV 250 m 

The sending power of UAV 10 w 

Flying energy consumption 200 w 

Hovering energy consumption 130 w 

Table 1: Parameter Settings 

Regarding energy consumption, we also evaluate three different UAV deployment approaches. 

Fig. 7 shows the comparison result. The fixed deploy approach has the best performance in this 

evaluation since UAVs only hover in a fixed position. As we discussed before, the energy 

consumption for hovering is lower than flying. Hence, the fixed deployment consumes lower 

energy. However, the fixed deploy approach has the worst coverage rate. Compared with the 

proposed VTUDA and random deployment, the random deployment has a slightly better energy 

consumption performance. But the coverage rate for random deployment is also worse than 

VTUDA. 

 

 



Fig. 7. Energy consumption 

 

 

Fig. 8. SINR comparison 

 

Finally, we compare the SINR for three different UAV deployment approaches in Fig. 8. The 

proposed VTUDA has the highest SINR than the other two deployment approaches which 

indicates that the proposed VTUDA has the highest probability to connect with vehicles that are 

in the communication range. In summary, based on the vehicle trajectory prediction result, the 

proposed VTUDA algorithm has the best coverage rate for moving vehicles compared with 

random deployment and fixed deployment approaches. 

 

VI.  FINAL REMARKS 

In this paper, we proposed a VTUDA algorithm to address the connectivity issues between 

vehicles and RSUs in dynamic traffic scenarios of smart transportation systems. Specifically, we 

dynamically deploy UAVs as mobile RSUs to provide connection coverage for moving road 

traffic. We considered the wireless communication channels, energy consumption, and predicted 

vehicle trajectory, in order to deploy UAVs to optimal positions. Since smart transportation 

systems are dis- tributed systems, we designed a distributed federated learning model and deployed 

the model to the RSUs. In order to predict the vehicle trajectory, we adopted the Seq2Seq-GRU 

model which supports receiving a sequence input and generating a sequence output. Based on the 

real datasets, the evaluation results showed the proposed VTUDA algorithm can improve the 

coverage rate and did not increase the energy consumption compare with the random deployment 

scheme. 
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