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Abstract 

Abstract – In the ever-evolving landscape of cybersecurity, the threat posed by malware 

continues to loom large, necessitating innovative and robust approaches for its effective 

detection and classification. In this paper, we introduce a novel method for malware 

classification that utilizes malware behavior and the power of deep learning. The utilization of 

Large Language Models (LLMs) or ChatGPT by attackers makes the recognition of malicious 

behaviors more challenging, significantly increasing alert fatigue and investigation costs. Our 

dataset combines malware samples from the BODMAS dataset. The proposed deep learning 

framework aims to capture the fundamental relevance across various malware families using 

their dynamic behavior features generated by a sandbox. The model leverages ChatGPT to 

abstract features in the malware dynamic behavior report, enhancing its capacity for malware 

detection. The insights derived from this work contribute significantly to the field of 

cybersecurity and pave the way for further advancements in the realm of malware detection. 

     Index Terms – Malware Dynamic Behavior, Malware Detection, Large Language Models, 

Machine Learning 

 

I. Introduction and Overview 

 The continuous evolution of malware presents formidable challenges to cybersecurity, 

demanding ingenious solutions for the timely and precise detection and classification of these 

threats. Malicious software, commonly referred to as malware, represents a grave peril to 

computer systems as it exploits vulnerabilities to gain unauthorized access and inflict damage. 

Traditional signature-based detection methods often struggle to keep pace with the continually 

mutating and obfuscating malware.  In response, there is growing interest in exploring 

innovative deep learning approaches for effective malware analysis and classification [1]. 

Leveraging the success of deep learning in recognizing, summarizing, translating, predicting, 

and generating content tasks, deep learning methods have been proposed for malware 

classification [2] because they offer the capacity to discern complex patterns and glean 

meaningful representations directly from raw data. 

 Researchers have extensively explored the use of Large Language Models (LLMs) for text 

embedding across various fields. For instance, Li and Yu examined the effectiveness of LLMs, 



 

such as GPT-2, in generating text embeddings, demonstrating that LLMs can maintain semantic 

integrity while significantly improving computational efficiency [3]. Similarly, Cao and Gao 

applied LLMs for malware traffic classification, showing that LLM-generated embeddings 

effectively distinguish between benign and malicious traffic, leading to faster processing times 

and enhanced accuracy [4]. In another study, Singh and Sharma investigated the impact of 

LLM-generated text embeddings, highlighting how LLMs preserve crucial features necessary 

for high performance in natural language processing tasks [5]. 

 More Recently, researchers have investigated the use of advanced language models and 

dynamic behavior analysis for malware detection tasks. Li and Yu explore the use of large 

language models (LLMs) for analyzing malware behavior, demonstrating their effectiveness in 

identifying and understanding malicious activities [3]. Chen et al. leverage LLMs to process 

and analyze report.json files from Cuckoo Sandbox, proposing a novel approach for dynamic 

malware detection [6]. Wang and Li present a deep learning-based approach using dynamic 

behavior analysis and report.json files from Cuckoo Sandbox, highlighting the efficacy of deep 

learning techniques, including LLMs, in enhancing malware detection accuracy and robustness 

[7]. These studies underscore the potential of LLMs and dynamic behavior analysis in 

improving malware detection tasks. 

 

II. Gap Assessment and Problem Statement 

 The complexity and sophistication of modern malware have outpaced traditional detection 

methods, making them inadequate for contemporary threats. Despite advancements, current 

machine learning (ML) and deep learning (DL) approaches still struggle with the diversity and 

rapid evolution of malware. Although Large Language Models (LLMs) offer potential for 

analyzing complex malware behaviors, their computational efficiency and ability to capture 

nuanced behaviors need further optimization. Additionally, dynamic behavior analysis 

provides deeper insights into malware activities, but translating these behaviors into actionable 

features for ML/DL models remains complex. Managing large, high-quality datasets that 

accurately represent the evolving threat landscape is also a continuous challenge. 

 Malware's evolving complexity demands advanced detection methods beyond traditional 

techniques. Despite the promise shown by ML and DL, these techniques often require extensive 

feature engineering and struggle with generalization. The integration of LLMs for dynamic 

behavior analysis introduces new opportunities but requires further research to enhance 

computational efficiency and accuracy. The challenge lies in developing a novel deep learning 

framework that leverages LLMs and dynamic behavior analysis for malware classification, 

aiming to improve detection accuracy, robustness, and efficiency in real-world applications. 

This research seeks to address these gaps, significantly contributing to the field of cybersecurity. 

 

 

 



 

III.   Topic Discussion 

In this section, we detail the dataset employed in our research, outlining its structure, the 

preparation process for malware classification, and the methodologies. 

 

Fig.1 Overall Workflow 

 

Figure 1 outlines a comprehensive workflow for performing binary classification on 

malware using dynamic behavior analysis and deep learning techniques with ChatGPT. The 

process is divided into ten phases. Initially, a 60GB BODMAS malware dataset is collected. In 

the dynamic behavior analysis phase, malware interactions are observed using Cuckoo 

Sandbox, generating detailed JSON reports. The data processing phase prepares this data for 

further analysis. Key features are then extracted from the dynamic behavior reports, providing 

insights into network activity, file operations, processes, and more. The dataset is prepared with 

400 samples of both benign and malicious files, retaining the original JSON reports. In the data 

transformation phase, JSON files are converted to text and tokenized using GPT-2, 

transforming text data into numerical vectors. Vector size equalization ensures consistency in 

length through padding and truncation. Dimensionality reduction via Principal Component 

Analysis (PCA) standardizes vectors to 10,000 dimensions. Machine learning models, 

including Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Random Forest 

(RF), are employed for classification. The models’ performance is evaluated using metrics such 

as F1-score, accuracy, precision, and recall. Finally, the results are analyzed to compare the 

models, identifying the best-performing one for malware classification. 

 



 

A. Dataset 

Our study utilizes data from the source: the BODMAS dataset [8]. The BODMAS dataset is 

an extensive collection of 57,293 Windows PE files, encompassing a mix of disarmed malware 

binaries and their associated metadata. From this dataset, we selected a subset of 24,813 

executable files, categorized into 14 distinct malware types. These categories include trojans, 

worms, backdoors, droppers, ransomware, potentially unwanted applications (PUAs), 

downloaders, viruses, crypto miners, information stealers, exploits, rootkits, peer-to-peer 

worms, and trojan-game thieves. 

B. Malware Analysis with Cuckoo Sandbox 

Virtual box with Kali Linux and Cuckoo Sandbox was utilized as the malware analysis 

environment. Cuckoo Sandbox provides a platform for automated malware analysis, allowing 

for the dynamic analysis of malicious software behavior. Upon uploading the dataset to Cuckoo 

Sandbox, the samples were classified based on their maliciousness. The classification criteria 

were as follows: (1) Samples with a score of 0-4 were considered benign (not malicious). (2) 

Samples with a score of 4-7 were suspected to be either benign or malicious. (3) Samples with 

a score of 7-10 were classified as malicious. 

 

Figure 2: Malware Dataset Analysis using Cuckoo Sandbox 

 

Figure 2 depicts the loading of malware sample data into the Cuckoo environment, where 

users can select and access each category (benign or malicious). The hash function assigned to 

each file uniquely distinguishes one malware sample from another, and users can access the 

scores used for classifying the malware. The score on the rightmost side shows the 

classification of a sample file, with feedback comments revealing the extent of the malware’s 



 

maliciousness. The bottom of the figure provides a summary of the dynamic behavior of sample 

malware data in the Cuckoo environment, showing details such as file, network, process, 

services, and registry activities. This comprehensive view allows users to analyze and 

understand significant information about malware’s behavior. 

C. Prepare ChatGPT API Readable Dynamic Behavior Analysis Report 

The focus of this research is using the dynamic behavior of malware as the pattern for 

classification. To extract the dynamic features of the dataset, the analysis results from Cuckoo 

Sandbox were exported, and the reports were downloaded. Each report contains valuable 

information regarding the behavior of the malware samples, including executed files, network 

activity (ports and IPs), system modifications, and more. To test the feasibility of the proposed 

idea, a sub-dataset was created by selecting 400 report.json files (comprising both benign and 

malicious sample data) based on criteria (1) and (3). These files were then converted to a 

readable format compatible with the ChatGPT API. Python scripts were used to convert the 

files into both .txt and .pdf file extensions. 

D. Malware Behavior Feature Vectorization Using ChatGPT 

Text embedding is a technique used in natural language processing to represent text data as 

numerical values or vectors. This technique transforms text, such as words, sentences, or 

paragraphs in a document, into values that can map the semantic proximity of such text. Large 

Language Models (LLMs), such as the GPT model, help extract meaningful features from 

unstructured data by identifying key behaviors and patterns that characterize different types of 

malwares. These extracted features are converted into numerical vectors that can serve as input 

for machine learning models, with each element representing the presence, absence, or 

frequency of a particular behavior or attribute identified in the reports. 

The advantage of text embedding lies in its ability to capture the contextual meaning of 

words and phrases, which is crucial for accurately understanding and classifying malware 

behaviors. By leveraging LLMs, we can process vast amounts of textual data from dynamic 

behavior reports, extracting intricate details that may be missed by traditional feature 

engineering methods. This approach not only improves the accuracy of malware detection but 

also enhances the robustness of the models against variations and obfuscations used by 

sophisticated malware. Moreover, text embeddings facilitate the integration of various data 

sources, enabling a more comprehensive analysis of malware activities. For instance, network 

logs, file operations, and system processes can all be embedded and analyzed within a unified 

framework. This holistic view aids in identifying complex attack patterns and provides deeper 

insights into the malware's operational tactics. 

This method aligns well with ongoing research efforts, highlighting the potential for LLMs 

to enhance malware detection accuracy and robustness through dynamic behavior analysis. By 

continuously updating the models with new data and refining the embeddings, we can stay 

ahead of emerging threats and maintain a high level of security. 

Here, we use the text embedding model employed by OpenAI, specifically text-embedding-

3-small, which is an improvement over the previous ada002 model due to its efficiency and 



 

capability of processing more complex data. This approach is cost-effective and can handle 

complex data, such as malware behavior reports. The data was extracted using the Fitz Python 

package and, after text embedding, it was saved in .csv format along with the vectors. 

Due to the non-uniformity in vectorization where each file has a different file size, there is 

a need to achieve uniformity by further applying PCA for dimensionality reduction. The steps 

are as follows: 

Phase 1: Setup 

• Import necessary libraries, define folder paths, and ensure the output folder exists. 

– os: Handles file paths and directory operations. 

– numpy: Performs numerical operations and handles array data. 

– PCA from sklearn: Applies Principal Component Analysis for dimensionality 

reduction. 

– joblib: Saves and loads the PCA model. 

Phase 2: Define Functions 

• Define functions to load vectors, apply PCA, and save both the reduced vectors and 

PCA model. 

– Load Embedded Vectors: Uses np.load to load the vector data from a .txt file specified 

by file Path. 

– Apply PCA: Initializes a PCA model with nComponents=10000 to reduce the vectors 

to 10,000 dimensions and applies it to the loaded vectors using pca.fit transform. 

– Save PCA Model: Constructs a file path for the PCA model and saves the model using 

joblib.dump for future use or reproducibility. 

– Save Reduced Vectors: Constructs a file path for the reduced vectors and saves them 

using np.save. 

Phase 3: Process Files 

• Iterate over each file in the input folder, applying the reduce Vector Size function to 

each .txt file. 

– Iterate through each file in the input folder. 

– Check if the file ends with .txt, indicating it’s a numpy array file. 

– Construct the full file path using os.path.join. 

– Call reduce Vector Size with the constructed file path and the output folder path to 

process the file. 

E. Malware Classification  

We adopted three traditional machine learning algorithms to evaluate the superiority of our 

extracted malware representation using LLMs. 



 

Support Vector Machine (SVM) works by finding the hyperplane that best separates data 

points into different classes in a high-dimensional space. In malware classification, SVM 

differentiates between various categories of malware by maximizing the margin between them. 

It is effective in high-dimensional spaces and relatively robust to overfitting, particularly when 

the number of dimensions exceeds the number of samples [10]. 

Random Forest (RF) constructs a multitude of decision trees during training and outputs 

the class which is the mode of the classes predicted by individual trees. It is used for malware 

classification by building trees based on the feature vectors and aggregating their results to 

determine the most likely malware category. RF handles large datasets with higher 

dimensionality well and is effective in reducing overfitting by averaging multiple deep decision 

trees [13]. 

Multilayer perceptrons (MLP) consist of interconnected layers of neurons designed to 

process input data through weighted connections and nonlinear activation functions, producing 

output. During training, MLP adjusts its weights via backpropagation to minimize error and 

enhance performance. In malware classification, MLPs analyze feature vectors from malware 

samples, enabling categorization into distinct classes and aiding in threat identification and 

mitigation [15]. MLPs handle intricate, high-dimensional data well, extracting nuanced 

patterns indicative of malicious activity. They combat overfitting through multiple neuron 

layers, ensuring robust generalization to unseen samples. Additionally, MLPs adapt to evolving 

threats by adjusting weights during training, making them suitable for dynamic environments 

with new malware variants. Overall, MLPs provide a resilient and adaptable framework for 

accurate and efficient malware binary classification [11] [12]. 

Hyperparameter Settings: We used the Python scikit-learn package to implement the base 

models. For all models, any parameter not specified below is set to its default value. Our RF 

consists of 500 trees, with 4 randomly chosen features considered when looking for the best 

split of a node. Our MLP includes 3 hidden layers, each consisting of 100 neurons. 

F. Performance Metrics 

The evaluation metrics used to assess the performance are as follows: 

1) Accuracy: Accuracy measures the proportion of correctly classified samples out of the 

total number of samples in the dataset. It is a widely used metric for classification tasks and 

provides an overall indication of how well the model performs in classifying different 

types of malwares. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 
2) Precision: Precision measures the proportion of correctly predicted instances of a 

specific malware class out of all instances that were classified as that class by the model. 

It is calculated by dividing the number of true positive predictions (correctly classified 

instances of a particular class) by the sum of true positive and false positive predictions for 

that class.  



 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

3) Recall: Recall, also known as sensitivity, measures the proportion of correctly predicted 

instances of a specific malware class out of all actual instances of that class in the dataset. It 

is calculated by dividing the number of true positive predictions for that class by the sum of 

true positive and false negative predictions for that class.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4) F1 Score: The F1-score is the harmonic mean of precision and recall. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

where, TP (True Positive): The number of correctly predicted instances of a specific malware 

family, indicating the model’s ability to accurately classify that specific type of malware. 

FP (False Positive): The instances where the model incorrectly classifies samples as a 

certain malware family when they belong to a different class or benign. 

TN (True Negative): The number of correctly identified samples that do not belong to the 

predicted class. 

FN (False Negative): The instances where the model incorrectly classifies samples as 

benign or other malware families when they belong to the predicted class. 

 

G. Experiment Results: 

We divided the pre-processed dataset into training and testing sets at ratios of 80% and 20%, 

respectively. This distribution is designed to train the model comprehensively, fine tune 

hyperparameters using a distinct subset, and assess the model’s ability to generalize on new, 

unseen data. Additionally, we performed 10-fold cross-validation to validate the experiments. 

 

Table 1:  Performance Metrics of Each Model 

Model Accuracy Precision Recall F1 Score 

SVM 0.925 0.913 0.954 0.933 

MLP 0.932 0.951 0.929 0.940 

RF 0.997 0.998 0.997 0.996 

 

Table 1 summarizes the performance of three different machine learning models: SVM, 

MLP, and RF. The metrics used to evaluate the models include accuracy, precision, recall, and 

F1-score. The RF model achieves near-perfect scores across all metrics, with an accuracy, 

precision, recall, and F1-score of nearly 100%, outperforming both SVM and MLP. Specifically, 

the MLP model follows closely with an accuracy of 93.2%, while the SVM model has an 



 

accuracy of 92.5%. Both RF and MLP demonstrate excellent precision, with RF achieving 99.8% 

and MLP 95.1%, whereas SVM has a lower precision of 91.3%. In terms of recall, RF achieves 

99.7%, while MLP and SVM have recalls of 92.9% and 95.4%, respectively. For the F1-score, 

RF achieves 99.6%, with MLP at 94.0% and SVM at 93.3%. Overall, the random forest model 

stands out as the superior choice with outstanding performance across all metrics in this study 

on the constructed dataset. 

IV.  Way Forward 

In this research, we have demonstrated the efficacy of using deep learning and Large 

Language Models (LLMs) to classify malware based on their dynamic behaviors. Our approach 

leverages the advanced capabilities of LLMs for feature extraction, which enhances the 

accuracy and robustness of traditional machine learning models like SVM, RF, and MLP. The 

results show that the random forest model outperforms the others, achieving near-perfect scores 

in all performance metrics. This underscores the potential of combining traditional machine 

learning methods with advanced natural language processing techniques for effective malware 

detection. 

Key challenges identified include the need for high-quality, relevant feature extraction by 

LLMs, the constant evolution of malware that necessitates continuous model updates, and the 

importance of efficiently managing large datasets while maintaining high classification speeds. 

By addressing these challenges, our approach provides a robust framework for improving 

cybersecurity measures. 

Due to time constraints, we were unable to create a sufficiently large dataset for this study. 

In future work, we plan to significantly expand the dataset and develop an end-to-end deep 

learning model for malware classification. Expanding the dataset will involve collecting and 

curating a larger, more comprehensive set of malware samples, ensuring a broader coverage of 

malware types and behaviors. This will improve the model's ability to generalize and accurately 

detect a wide range of threats. Additionally, we aim to deploy these models in real-world 

environments for real-time malware classification. This will involve rigorous testing and fine-

tuning in live settings to ensure the models can handle the dynamic and fast-paced nature of 

actual cyber threats. Integrating these models with existing cybersecurity systems will enable 

immediate response and mitigation based on the classification results, further enhancing the 

practical applicability and impact of this research. 

To maintain the model's efficacy over time, we will implement mechanisms for continuous 

learning and adaptation. This includes developing strategies for the models to self-improve 

based on new data and feedback, ensuring they stay updated with the latest malware trends. 

Performance optimization will be a key focus, aiming to enhance computational efficiency and 

accuracy to manage large volumes of data swiftly and precisely. This will involve fine-tuning 

hyperparameters and employing advanced techniques to reduce false positives and negatives. 

By detailing these steps, we aim to create a more resilient and effective malware detection 

system capable of keeping pace with the fast-evolving threat landscape. The synergy between 



 

LLMs and dynamic behavior analysis offers a promising path forward in the fight against cyber 

threats, providing a robust framework for enhancing cybersecurity measures. 
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